We are built to be kind

Greed is good. Competition is natural. War is inevitable. Whether in political theory or popular culture, human nature is often portrayed as selfish and power hungry. UC Berkeley psychologist Dacher Keltner challenges this notion of human nature and seeks to better understand why we evolved pro-social emotions like empathy, compassion and gratitude.

We’ve all heard the phrase ‘survival of the fittest’, born from the Darwinian theory of natural selection. Keltner adds nuance to this concept by delving deeper into Darwin’s idea that sympathy is one of the strongest human instincts — sometimes stronger than self-interest.

Want to see more? Subscribe to Fig. 1 on YouTube

Why are human faces so unique?

What’s in a face? The amazing variety of human faces — far greater than that of most other animals — is the result of evolutionary pressure to make each of us unique and easily recognizable, according to a new study out of UC Berkeley.

Behavioral ecologist Michael J. Sheehan explains that our highly visual social interactions are almost certainly the driver of this evolutionary trend. Many animals use smell or vocalization to identify individuals, making distinctive facial features unimportant, especially for animals that roam after dark, he said. But humans are different.

In the study, Sheehan and coauthor Michael Nachman asked, “Are traits such as distance between the eyes or width of the nose variable just by chance, or has there been evolutionary selection to be more variable than they would be otherwise; more distinctive and more unique?”

As predicted, the researchers found that facial traits are much more variable than other bodily traits, such as the length of the hand, and that facial traits are independent of other facial traits, unlike most body measures. People with longer arms, for example, typically have longer legs, while people with wider noses or widely spaced eyes don’t have longer noses. Both findings suggest that facial variation has been enhanced through evolution.

“Genetic variation tends to be weeded out by natural selection in the case of traits that are essential to survival,” Nachman said. “Here it is the opposite; selection is maintaining variation. All of this is consistent with the idea that there has been selection for variation to facilitate recognition of individuals.”

Human faces are so variable because we evolved to look unique

Do gut bacteria rule our minds?

Gut Bacteria

It sounds like science fiction, but it seems that bacteria within us — which outnumber our own cells about 100-fold — may very well be affecting both our cravings and moods to get us to eat what they want, and often are driving us toward obesity.

In an article published this week in the journal BioEssays, researchers from UC San Francisco, Arizona State University and University of New Mexico concluded from a review of the recent scientific literature that microbes influence human eating behavior and dietary choices to favor consumption of the particular nutrients they grow best on, rather than simply passively living off whatever nutrients we choose to send their way.

Bacterial species vary in the nutrients they need. Some prefer fat, and others sugar, for instance. But they not only vie with each other for food and to retain a niche within their ecosystem — our digestive tracts — they also often have different aims than we do when it comes to our own actions

Read more about the manipulative bacteria in our gut

Powering the world from space

The limitations of using solar power on earth can be anything from bad weather to just the fact that it needs to be daytime.  What if power could be collected both day and night, rain or shine? National Lab researchers at Lawrence Livermore are studying this possibility by launching solar satellites into space.

These orbiting power plants could always be positioned on the day side of earth high above any type of stormy weather.  One of the ways this could work is to have a string of geostationary satellites 35,000km above the earth’s surface that would transmit power back down to earth via microwaves.  Just one of these satellites could power a major US city.

The challenge comes with both the size and the cost.  A single satellite could be as big as 3-10km in diameter and need around 40 rocket launches to get all the materials into space.

Read more about this technology here 

The squishiness of cancer cells

Cells are tiny, but what they can reveal about our health is profound.

A misshapen nucleus is bad news. For any given cell, the nucleus — the home of most of a cell’s genetic material — generally takes a fairly consistent shape. But when things go wrong and disease takes hold, the nucleus can become deformed.

UCLA’s Amy Rowat explains how an enlarged nucleus is a telltale sign of something gone awry. Corrupted cells with cancerous leanings take on a different texture to healthy cells. They are softer and more malleable, or, as Amy puts it, more “squishy.”

Her research investigates the texture and squishiness of cells in our body, which can have a huge impact on treatments for cancer and genetic disorders. Using tiny instruments, this change in cellular flexibility can be used to diagnose disease, and could one day help determine which treatments might be most suitable for each patient.

While the minutia of a nucleus may initially seem too tiny to focus on if we’re seeking to understand something as complex as cancer, the ‘squishiness’ of a cell may open up a vast array of innovations and breakthroughs. The significance of basic research is just as consequential as applied research. It seeks to answer larger, fundamental questions and offers the possibility of finding answers with wide ranging effects. Sometimes starting with a broader set of questions can lead to a variety of discoveries whose full impact cannot be known at the outset. A collaboration with the UCLA medical school means Rowat’s work could have a meaningful clinical impact on the study and treatment of cancer and other diseases.

Want to see more? Subscribe to Fig. 1 on YouTube

The Next Frontier of Medicine


Following your gut takes on a whole new meaning as scientists find relationships between the brain and gut bacteria.

The next frontier of medicine isn’t in the depths of an Amazon jungle or in an air-conditioned lab; it’s in the rich and mysterious bacterial swamp of your gut. Long viewed as an enemy within, bacteria in the body have been subjected to a century-long war in which antibiotics have been the medical weapon of choice. But today, the scientific consensus about our body’s relationship with the trillions of microbes that call it home—collectively known as the microbiome—is changing dramatically. From potentially shaping our personalities to fighting obesity, the bacteria in our bellies play a much stronger role in our overall health than we once thought.

Developments in sequencing technology in the last decade have allowed scientists to better understand gut bacteria, and recent studies have shed light on how our digestive systems may mold brain structure when we’re young and influence our moods, feelings, and behavior when we’re adults. Scientists experimenting on mice have found links between gut bacteria and conditions similar to autism and anxiety in humans.

While it’s still early, the implications of better understanding how gut bacteria impacts our minds and bodies could change the way doctors treat myriad conditions, says Michael A. Fischbach, a microbiologist at UC San Francisco (UCSF). “If we use history as a guide, a lot of ideas probably won’t work out,” Fischbach says. “But even if one of them does, it’s a huge deal.”

Read the full article

Microscopic Nanolasers

From an electrical engineering researcher at the Jacobs School of Engineering at UC San Diego:

“It resembles a mushroom cloud, but in fact, it’s one of our microscopic nanolasers, imaged under an electron microscope.  These lasers are among the smallest in the world, so small you could fit a billion of them on an iPhone home button, small enough to one day fit easily on a computer chip to help computers send data using light.

Here, you see the laser partway through our fabrication process, a process that can take a week or more.  In the previous step, the laser was coated with a puffy layer of glassy material, used to keep the laser light from leaking away and to keep the laser’s two electrical contacts separated. At the center beneath this smooth white layer lies the actual laser core.  When my labmate Qing gets to this step, it comes with a sense of relief, since the glassy layer helps strengthen the laser, keeping it from snapping in half.  When this laser’s eventually finished, it will be encapsulated in a thin shell of metal, and emit light through its base.”

The hope is that this technology will one day produce much faster computer chips.

Neuroscape Lab puts brain activity on vivid display

In Adam Gazzaley’s new lab, the brain is a kaleidoscope of colors, bursting and pulsing in real time to the rhythm of electronic music.

The mesmerizing visual on the screen is a digital masterpiece — but the UC San Francisco neuroscientist has a much bigger aspiration than just creating art. He wants this to lead to treatments for a variety of brain diseases, including Alzheimer’s, autism and multiple sclerosis.

Gazzaley, M.D., Ph.D., opened the Neuroscape Lab in March at UCSF’s Mission Bay campus, where he’s developed a way to display a person’s brain activity while it’s thinking, sensing and processing information, allowing researchers to see what areas of the person’s brain are being triggered — or, in the case of certain diseases, not triggered.

Until recently, it was impossible to study brain activity without immobilizing the person inside a big, noisy machine or tethering him or her to computers. At the Neuroscape Lab, subjects can move freely to simulate real-world conditions.

One of its first projects was the creation of new imaging technology called GlassBrain, in collaboration with the Swartz Center at UC San Diego and Nvidia, which makes high-end computational computer chips. Brain waves are recorded through electroencephalography (EEG), which measures electrical potentials on the scalp, and projected onto the structures and connecting fibers of a brain image created with Magnetic Resonance Imaging and Diffusion Tensor Imaging.

To demonstrate the technology at the lab’s opening, Grateful Dead drummer Mickey Hart donned an Oculus Rift virtual reality headset and played a drumming video game designed to enhance brain function, while colorful images of his brain in action showed on the screen. Video games like NeuroDrummer are an entertaining and accessible way that Gazzaley is developing to train the brain.

“I want us to have a platform that enables us to be more creative and aggressive in thinking how software and hardware can be a new medicine to improve brain health,” said Gazzaley, an associate professor of neurology, physiology and psychiatry and director of the UCSF Neuroscience Imaging Center. “Often, high-tech innovations take a decade to move beyond the entertainment industry and reach science and medicine. That needs to change.”

West Antarctic glacier loss appears unstoppable

A rapidly melting section of the West Antarctic Ice Sheet appears to be in irreversible decline, with nothing to stop the entire glacial basin from disappearing into the sea, according to researchers at UC Irvine and NASA.

The new study presents multiple lines of evidence — incorporating 40 years of observations that six massive glaciers in the Amundsen Sea sector “have passed the point of no return,” according to glaciologist Eric Rignot, a UC Irvine Earth system science professor who is also with NASA’s Jet Propulsion Laboratory. The new study has been accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union.

These glaciers already contribute significantly to sea level rise, releasing as much ice into the ocean each year as the entire Greenland Ice Sheet does. They contain enough ice to boost the global sea level by 4 feet (1.2 meters) and are melting faster than most scientists had expected. Rignot said the findings will require that current predictions of sea level rise be revised upward.

“This sector will be a major contributor to sea level rise in the decades and centuries to come,” Rignot said. “A conservative estimate is that it could take several centuries for all of the ice to flow into the sea.”

Three lines of evidence

Three major lines of evidence point to the glaciers’ eventual demise: changes in their flow speeds, how much of each glacier floats on seawater, and the slope and depth below sea level of the terrain they’re flowing over. In a paper published last month, the research group showed that the speed at which the glaciers are moving has accelerated steadily for four decades, increasing the amount of ice draining from them by 77 percent from 1973 to 2013. This new study focuses on the other two lines of evidence.

The West Antarctic glaciers flow out from land over the ocean, with their front edges afloat. The point at which they lose contact with land is called the grounding line. Virtually all glacial melting occurs on the undersides of their floating sections — beyond the grounding line.

Just as a boat that’s run aground can float again if its cargo is unloaded, a glacier can float over an area where it used to be grounded if it becomes lighter, which it does by melting or by stretching out and thinning. The Antarctic glaciers studied by Rignot’s group have shrunk so much that they’re now floating above places where they used to sit solidly on land, which means the grounding lines are retreating inland.

They’re “buried under a thousand or more meters of ice, so it’s incredibly challenging for a human observer on the ice sheet surface to figure out exactly where the transition is,” Rignot said. “This analysis is best done via satellite techniques.”

The team used radar observations from the European Remote Sensing satellites (ERS-1 and ERS-2) between 1992 and 2011 to map the grounding lines’ inland creep. The satellites employ a method called radar interferometry that enables scientists to measure very precisely — within a quarter of an inch — how Earth’s surface is moving. Glaciers shift horizontally as they flow downstream, but their floating portions also rise and fall with changes in the tides. Rignot and his group mapped how far inland these vertical motions extend to locate the grounding lines.

Vicious cycle

The accelerating flow speeds and retreating grounding lines reinforce each other in a recurring loop. As glaciers move faster, they stretch out and thin, which decreases their weight and lifts them farther off the bedrock. As the grounding line retreats and more of the glacier becomes waterborne, there’s less resistance underneath, so the flow accelerates, and so on — with each action intensifying the next.

Slowing or stopping these changes requires “pinning points” — bumps or hills rising from the glacier bed that snag the ice from below. To locate them, researchers produced a more accurate map of bed elevation that combines ice velocity data from ERS-1 and ERS-2 and ice thickness data from NASA’s Operation IceBridge mission and other airborne campaigns. The results confirmed that just one pinning point remains upstream of the current grounding lines. Only Haynes Glacier has major bedrock obstructions upstream, but it drains a small sector and is retreating as rapidly as the other glaciers.

Bed topography is another key to the fate of the ice in this basin. All the glacier beds slope deeper below sea level as they extend inland. As they retreat, they cannot escape the ocean’s reach, and the relatively warm water melts them even more rapidly.

The accelerating flow rates, lack of pinning points and sloping bedrock all point to one conclusion, Rignot said:

“The collapse of this sector of West Antarctica appears to be unstoppable. The fact that the retreat is happening simultaneously over a large sector suggests it was triggered by a common cause, such as an increase in the amount of ocean heat beneath the floating parts of the glaciers. At this point, the end appears to be inevitable.”

Exploring Urban Trends through Selfies

Vintage Selfie

The term ‘selfie’ took on a life of its own in 2013, especially after the Oxford English Dictionary selected it as the ‘international word of the year’. The Internet and mobile phones were awash in self-portraits as consumers purchased more smartphones with front-facing cameras – turning the selfie into a truly worldwide phenomenon.

Now, the Software Studies Initiative –– led by UCSD Comp Sci professor Lev Manovich –– has been working on a project called selfiecity, which investigates selfies using a mix of quantitative, theoretic and artistic methods.  Looking at five cities around the world, they randomly select 20,000-30,000 photos per city, per day.

Here are some of their findings:

  • People take less selfies than often assumed –– depending on the city, only 3-5% of images analyzed were actually selfies.
  • Moscow is at the bottom of the selfie smile index. (Bangkok is at the top.)
  • In every city analyzed, there are significantly more women selfies than men selfies.
  • Men over 30 share more selfies than women over 30. “Women may take them, but they don’t post them.”
  • And it’s a young person’s game. The median selfie age is 23.7 years.

What will they look at next? Perhaps Manovich will compare selfies taken in cities with those taken in suburbs or rural areas … or selfies that have professional polish with those of a more casual nature.

[The image above is from the Museum of the City of New York.]