Category Archives: Health

What Does Sugar Actually Do To Your Body?

The effects of sugar can take your body down a vicious cycle known as metabolic syndrome. UC Davis’ Kimber Stanhope altered the diets of a group of volunteers for her study. Instead of her subjects eating food like rice, pasta or bread, she had them consume a sugary beverage. The effects on the body started in the liver and from there Stanhope explains how that set off a chain of responses in the body.

Learn more at: sugarscience.org

FEATURING: Kimber Stanhope, UC Davis

The research highlighted in this video has been supported in part by the National Institutes of Health, University of California, Office of the President and the Tanita Healthy Weight Foundation.

How Do Our Bodies Fight Off Dangerous Chemicals?

We’re all subjects in a massive experiment. Humans have created about 80,000 synthetic industrial compounds — including plastics, the flame retardants that cover our sofas, and pesticides. These compounds have structures that are not commonly seen in nature and present a risk to our health. Everybody on the planet is exposed.

It’s important to understand what these substances are doing to our bodies so that scientists can create a rule book for making these chemicals safer.

The challenge to understanding how dangerous compounds get into our body is complex. The way we have been doing this in the past is to test if a synthetic compound dissolves in fat. If it does then theres a high likelihood that it can easily enter our body’s cells where it can cause harm.

The problem with this method is that it doesn’t always accurately predict how much a compound accumulates in organisms. A historic example of this is DDT which was used on crops to get rid of pests, but ultimately found its way through the food chain. It’s now considered a risk factor for breast cancer in humans.

At UC San Diego’s Scripps Institution of Oceanography, Amro Hamdoun is looking at the biological properties of how these compounds interact with cells. The focus is on how the cell decides which compounds to let in and which ones to eliminate.

 

Fruit and Liquid Sugar

Liquid sugar, such as in sodas, energy drinks and sports drinks, is the leading single source of added sugar in the American diet, representing 36% of the added sugar we consume.

Research suggests that our bodies process liquid sugar differently than sugar in foods, especially those containing fiber.

Scientists argue that when you eat an apple (for example), you may be getting as many as 18 grams of sugar, but the sugar is “packaged” with about one-fifth of our daily requirement of fiber. Because it takes our bodies a long time to digest that fiber, the apple’s sugar is slowly released into our blood stream, giving us a sustained source of energy.

But when we drink the same amount of sugar in sugary drinks, it doesn’t include that fiber. As a result, the journey from liquid sugar to blood sugar happens quickly, delivering more sugar to the body’s vital organs than they can handle. Over time, that can overload the pancreas and liver, leading to serious diseases like diabetes, heart disease and liver disease.

Watch the full video with UC Davis nutritional biologist, Dr. Kimber Stanhope:

Caffeine helps your memory

Caffeine is the energy boost of choice for millions who consume it to wake up or stay up. Now, UC Irvine neurobiologist Michael Yassa has found another use for the stimulant: memory enhancer.

Michael Yassa, assistant professor of neurobiology & behavior, and his team of scientists found that caffeine has a positive effect on long-term memory in humans.

“We’ve always known that caffeine has cognitive enhancing effects, but its particular effects on strengthening memories and making them resistant to forgetting has never been examined in detail in humans,” Yassa said. “We report for the first time a specific effect of caffeine on reducing forgetting over 24 hours.”

The researchers conducted a double-blind trial in which participants who did not regularly eat or drink caffeinated products received either a placebo or a 200 milligrams caffeine tablet five minutes after studying a series of images. Saliva samples were taken from the participants before ingesting caffeine, and one, three and 24 hours afterwards to check for increased caffeine levels.

The next day, both groups were tested on their ability to recognize images from the previous day’s study session. On the test, some of the visuals were the same as from the day before, some were new additions and some were similar but not the same as the items previously viewed. Researchers say more participants in the caffeine group were able to correctly identify the new images as “similar” to previously viewed images versus erroneously citing them as the same.

The brain’s ability to recognize the difference between two similar but not identical items, called pattern separation, reflects a deeper level of memory retention, the researchers said.

“If we used a standard recognition memory task without these tricky similar items, we would have found no effect of caffeine,” Yassa said. “However, using these items requires the brain to make a more difficult discrimination – what we call pattern separation, which seems to be the process that is enhanced by caffeine in our case.”

[Image via yourcoffeeguru]

Read the rest of the most discussed UC research of 2014 →

How songbirds may help build a better hearing aid

Untreated hearing loss can have devastating and alienating repercussions on a person’s life: isolation, depression, sapped cognition, even dementia.

Yet only one in five Americans who could benefit from a hearing aid actually wears one. Some don’t seek help because their loss has been so gradual that they do not feel impaired. Others cannot afford the device. Many own hearing aids but leave them in a drawer. Wearing them is just too unpleasant.

“In a crowded place, it can be very difficult to follow a conversation even if you don’t have hearing deficits,” says UC Berkeley neuroscientist Frederic Theunissen. “That situation can be terrible for a person wearing a hearing aid, which amplifies everything.”

Imagine the chaotic din in which everything is equally amplified: your friend’s voice, the loud people a few tables over, and the baby crying across the room.

In that scenario, the friend’s voice is the signal, or sound that the listener is trying to hear. Tuning in to signal sounds, even with background noise, is something that healthy human brains and ears do remarkably well. The question for Theunissen — a professor who focuses on auditory perception — was how to make a hearing aid that processes sound the way the brain does.

“We were inspired by the biology of hearing,” Theunissen said. “How does the brain do it?”

Songbirds excel at listening in crowded, noisy environments

Humans aren’t the only ones able to hone in on specific sounds in noisy environments. For the past two years, Theunissen and the graduate students in his lab have studied songbirds, which are especially adept at listening in crowded, noisy environments.

By looking at songbird brain imagery, the researchers now understand how chatty, social animals distinguish the chirp of a mate from the din of dozens of other birds.

They were able to identify the exact neurons that tune into a signal and remain tuned there no matter how noisy the environment becomes. These neurons shine what Theunissen calls an “auditory spotlight” by focusing in on certain features or “edges” of a sound. Imagine you are looking for your cellphone on a table covered with objects. In the same way that your eye can find for a specific rectangular shape and color, your ear searches for and finds certain pitches and frequencies: the sound of a friend’s voice in a restaurant.

“Our brain does all this work, suppressing echoes and background noise, conducting auditory scene analysis,” Theunissen says.

A Proof of Concept Commercialization Gap grant from UC Research Initiatives in the Office of the President provided the critical funding the lab needed to take the discovery one giant step farther.

Read How songbirds may help build a better hearing aid →

Is Sugar in Fruit Different Than Sugar in Soda?

Sugar. Everyone loves a sweet treat, but sugar has found its way into savory foods like pasta sauce and bread. On average, Americans eat nearly 66 pounds of added sugar per person per year. It’s easy to exceed the daily recommended sugar intake when a 12 oz soda has about 11 teaspoons of added sugar.  But what about the sugar in fruit?  Should people be worried about how much fruit they’re eating? Kimber Stanhope, a Nutritional biologist at UC Davis, walks us through the science.

Sugar doesn’t just add to our waistlines, it is linked to chronic conditions like heart disease and diabetes. There is also growing scientific consensus that one of the most common types of sugar, fructose (found in high-fructose corn syrup and table sugar) can be toxic to the liver, just like alcohol.

Is fruit juice better for you than soda?   

Dr. Stanhope gets asked this a lot. The short answer is that no one really knows for sure.

“…it drives me crazy that I don’t know the answer for sure. I have not found any studies in the scientific literature that have actually compared the consumption of a sugar-sweetened beverage to a fruit juice-sweetened beverage for more than one day. So we’re going to do a 2-week study…one group will be getting fruit juice (orange juice), the other group will get a sucrose-sweetened beverage. And I think it’s very important that this study gets done because there are many scientists out there that have made the assumption that fruit juice is just as bad as sucrose [because they’ve taken out the fiber in fruit], and they might be right, but I don’t know. There is evidence in the literature, epidemiological studies, that suggest that fruit juice is protective compared to a sugar-sweetened beverage, and there is also a couple of studies that suggest they’re just as bad. We need to know.”

Stanhope points out that the answer may even differ for each type of fruit juice (grapefruit juice, apple juice, orange juice, etc.).  She hopes to study the question in more detail once the preliminary results come in.

More information at sugarscience.org

Developing the world’s first neural device to restore memory

The Neural Technology group at Lawrence Livermore National Lab will seek to develop a neuromodulation system — a sophisticated electronics system to modulate neurons — that will investigate areas of the brain associated with memory to understand how new memories are formed.

The research builds on the understanding that memory is a process in which neurons in certain regions of the brain encode information, store it and retrieve it. Certain types of illnesses and injuries, including Traumatic Brain Injury (TBI), Alzheimer’s disease and epilepsy, disrupt this process and cause memory loss. TBI, in particular, has affected 270,000 military service members since 2000.

The goal of LLNL’s work — driven by LLNL’s Neural Technology group and undertaken in collaboration with the University of California, Los Angeles (UCLA) and Medtronic — is to develop a device that uses real-time recording and closed-loop stimulation of neural tissues to bridge gaps in the injured brain and restore individuals’ ability to form new memories and access previously formed ones.

Science Today recently spoke with Livermore Lab research engineer, Angela Tooker about the project: